ORRETS MEADOW SCHOOL MATHS
 CALCULATION POLICY
 Combined with the White Rose Hub

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary.

At Orrets Meadow we use planning and guidance from the White Rose Hub. The presentation of maths teaching for pupils who have difficulty with recall and retention needs to be visual and practical. While we take on the methods suggested by the White Rose Hub we also will amend work and practice in line with the needs and abilities of our children.

Multisensory methods of teaching maths is important for our pupils and when we can we will aim to make learning as multisensory as possible to help engage and support children.

Pupils at Orrets Meadow are given a baseline assessment on entry to school and due their needs may access teaching from year groups other than their own. With this in mind this document is used to support the progression of learning in line with progression mapping.

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.
Combiningtwo partsto makeawhole(useother

resourcestooe.g. eggs, shells, teddy bears, cars). \begin{tabular}{l}
Children to represent the cubes using dots or crosses. They

could put each part on a part whole model too.

$4+3=7$

Four is a part, 3 is a part and the whole

is seven.
\end{tabular}

Regrouping to make 10;usingtenframes and counters/cubes or using Numicon. $6+5$ $\begin{array}{\|c\|c\|c\|} \hline 0 & -1 & 0 \\ \hline \hline & & \\ \hline \end{array}$ 808080	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses forones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $+\begin{array}{r} 41 \\ \hline 49 \end{array}$
TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Childrentorepresentthe base10inaplacevaluechart.	Looking for ways to make 10.

Use of place value counters to add HTO + TO,HTO + HTO etc. Whenthere are 10 ones inthe 1 scolumn-we exchange for 1 ten, when there are 10 tens inthe 10 s column- we exchange for 1 hundred.

100s	10s	1s
-®	0000	000
$\bigcirc \bigcirc$		00 08 08

Children to represent the counters in a place value chart, circling when they make an exchange.

243
+368
611
11

Conceptual variation; different ways to ask children to solve $21+34$

Word problems:
Inyear3, there are 21 children and in year 4, there are 34 children. How many children in total?
$21+34=55$. Prove it
21
$+34$
$21+34=$
$\boldsymbol{i}^{-7}=21+34$
Calculatethe sum of twenty-one and thirty-four.

Missing digit problems:

$10 \mathbf{s}$	$\mathbf{1 s}$
	$?$
$?$	5

Calculation Policy Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.
Physically taking away and removing objects from a whole
(ten frames, Numicon, cubes and other items such as

beanbags could be used). | Children to draw the concrete resources they are using |
| :--- |
| and cross out the correct amount. The bar model can |
| also be used. |

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5 .

Making 10 using ten frames.
14-5

Column method using base 10. 48-7

Children to draw the cubes/other concrete objects which they haveusedorusethebarmodelto illustratewhat they need tocalculate.

Children to present the ten frame pictorially and discuss what they did to make 10.

Children to represent the base 10 pictorially.

Findthe difference between8 and 5.
$8-5$, the difference is
Children to explore why
$9-6=8-5=7-4$ have the same difference.

Childrento show how they canmake 10 by partitioning the subtrahend.

$14-4=10$
$10-1=9$
Column methodorchildrencould count back 7 .

Calculation policy:Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Partition to multiply using Numicon, base 10 orCuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. ```4\times15 10 5 10\times4=40 5x 4 = 20 40+20=60``` ```4\times15 10 5 10\times4=40 5x 4 = 20 40+20=60``` ```4\times15 10 5 10\times4=40 5x 4 = 20 40+20=60``` A number line can also be used
Formal column method with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially.	Children to record what it is they are doing to showunderstanding. $\begin{array}{cc} 3 \times 23 & 3 \times 20=60 \\ 1 \backslash & 3 \times 3=9 \\ 203 & 60+9=69 \end{array}$ $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \end{array}$

Calculation policy: Division

Keylanguage: share, group, divide, divided by, half.

2d \div 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.
$13 \div 4$
Use of Iollipop sticks to form wholes-squares are made because we are dividing by 4 .

There are 3 whole squares, with 1 left over.

Sharing using place value counters.

$42 \div 3=14$

There are 3 whole squares, with 1 left over.

Children to represent the place value counters pictorially.

$13 \div 4-3$ remainder 1
Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
' 3 groups of 4 , with 1 left over'

Children to be able to make sense of the place value counters and write calculations to show the process.
$42 \div 3$
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$

Shortdivision using placevalue counterstogroup.
$615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Representthe place valuecounterspictorially.

Children to the calculation using the short division scaffold. $5^{\frac{123}{61} 1^{\prime} 5}$

Long division using place value counters

$2544 \div 12$

1000s	100s	10s	1s
\bigcirc	-000	0000	0000
1000s	100s	10s	Is
		-000	రणতర

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds	
into groups of 12 which leaves	
with 1 hundred.	$1 2 \longdiv { 2 2 } \begin{array} { l } { 2 4 } \\ { \hline } \end{array}$

After exchanging the hundred, we	
have 14 tens. We can group 12 tens	
into a group of 12 , which leaves 2 tens.	$12 \begin{array}{l}2421 \\ \end{array}$
$\frac{14}{2544}$	

1000s	100s	10s	1 s
		808	

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be putinto 5 groups. How many will be in each group?

$5 \longdiv { 6 1 5 }$

$615 \div 5=$
[-] $=615 \div 5$

What is the calculation?
What is the answer?

REAL LIFE MATHS

We promote 'real life' maths at Orrets Meadow and so for each of the four operations taught we would include money, measure and time when possible. In 'shape' work we would encourage looking at real life shapes. Shapes of objects and things we see every day. Where we can relate the teaching of maths to real life situations and scenarios we will. This will help support our pupils as they go through life and become responsible and independent citizens.

Useful websites

```
Maths online learning can support understanding
https://www.bbc.co.uk/bitesize/subjects/z6vg9j6
https://www.topmarks.co.uk/maths-games/5-7-years/counting
```

https://login.mathletics.com/

